24 resultados para dna methylation

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pre-B cell acute lymphoblastic leukemia (ALL) is the most prevalent childhood malignancy and remains one of the highest causes of childhood mortality. Despite this, the mechanisms leading to disease remain poorly understood. We asked if recurrent aberrant DNA methylation plays a role in childhood ALL and have defined a genome-scale DNA methylation profile associated with the ETV6-RUNX1 subtype of pediatric ALL. Archival bone marrow smears from 19 children collected at diagnosis and remission were used to derive a disease specific DNA methylation profile. The gene signature was confirmed in an independent cohort of 86 patients. A further 163 patients were analyzed for DNA methylation of a three gene signature. We found that the DNA methylation signature at diagnosis was unique from remission. Fifteen loci were sufficient to discriminate leukemia from disease-free samples and purified CD34+ cells. DNA methylation of these loci was recurrent irrespective of cytogenetic subtype of pre-B cell ALL. We show that recurrent aberrant genomic methylation is a common feature of pre-B ALL, suggesting a shared pathway for disease development. By revealing new DNA methylation markers associated with disease, this study has identified putative targets for development of novel epigenetic-based therapies.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA methylation biomarkers capable of diagnosis and subtyping have been found for many cancers. Fifteen such markers have previously been identified for pediatric acute lymphoblastic leukemia (ALL). Validation of these markers is necessary to assess their clinical utility for molecular diagnostics. Substantial efficiencies could be achieved with these DNA methylation markers for disease tracking with potential to replace patient-specific genetic testing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Acute Lymphoblastic Leukaemia (ALL) is the most common cancer in children. Over the past four decades, research has advanced the treatment of this cancer from a less than 60% chance of survival to over 85% today. The causal molecular mechanisms remain unclear. Here, we performed sequencing-based genomic DNA methylation profiling of eight paediatric ALL patients using archived bone marrow smear microscope slides. FINDINGS: SOLiD™ sequencing data was collected from Methyl-Binding Domain (MBD) enriched fractions of genomic DNA. The primary tumour and remission bone marrow sample was analysed from eight patients. Four patients relapsed and the relapsed tumour was analysed. Input and MBD-enriched DNA from each sample was sequenced, aligned to the hg19 reference genome and analysed for enrichment peaks using MACS (Model-based Analysis for ChIP-Seq) and HOMER (Hypergeometric Optimization of Motif EnRichment). In total, 3.67 gigabases (Gb) were sequenced, 2.74 Gb were aligned to the reference genome (average 74.66% alignment efficiency). This dataset enables the interrogation of differential DNA methylation associated with paediatric ALL. Preliminary results reveal concordant regions of enrichment indicative of a DNA methylation signature. CONCLUSION: Our dataset represents one of the first SOLiD™MBD-Seq studies performed on paediatric ALL and is the first to utilise archival bone marrow smears. Differential DNA methylation between cancer and equivalent disease-free tissue can be identified and correlated with existing and published genomic studies. Given the rarity of paediatric haematopoietic malignancies, relative to adult counterparts, our demonstration of the utility of archived bone marrow smear samples to high-throughput methylation sequencing approaches offers tremendous potential to explore the role of DNA methylation in the aetiology of cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Although there is a documented social gradient for osteoporosis, the underlying mechanism(s) for that gradient remain unknown. We propose a conceptual model based upon the allostatic load theory, to suggest how DNA methylation (DNAm) might underpin the social gradient in osteoporosis and fracture. We hypothesise that social disadvantage is associated with priming of inflammatory pathways mediated by epigenetic modification that leads to an enhanced state of inflammatory reactivity and oxidative stress, and thus places socially disadvantaged individuals at greater risk of osteoporotic fracture. METHODS/RESULTS: Based on a review of the literature, we present a conceptual model in which social disadvantage increases stress throughout the lifespan, and engenders a proinflammatory epigenetic signature, leading to a heightened inflammatory state that increases risk for osteoporotic fracture in disadvantaged groups that are chronically stressed. CONCLUSIONS: Our model proposes that, in addition to the direct biological effects exerted on bone by factors such as physical activity and nutrition, the recognised socially patterned risk factors for osteoporosis also act via epigenetic-mediated dysregulation of inflammation. DNAm is a dynamic modulator of gene expression with considerable relevance to the field of osteoporosis. Elucidating the extent to which this epigenetic mechanism transduces the psycho-social environment to increase the risk of osteoporotic fracture may yield novel entry points for intervention that can be used to reduce individual and population-wide risks for osteoporotic fracture. Specifically, an epigenetic evidence-base may strengthen the importance of lifestyle modification and stress reduction programs, and help to reduce health inequities across social groups. MINI ABSTRACT: Our conceptual model proposes how DNA methylation might underpin the social gradient in osteoporotic fracture. We suggest that social disadvantage is associated with priming of inflammatory signalling pathways, which is mediated by epigenetic modifications, leading to a chronically heightened inflammatory state that places disadvantaged individuals at greater risk of osteoporosis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background - Alterations in folate status are associated with colorectal carcinogenesis. Folate’s role has been postulated to be either via prevention of changes in DNA methylation or uracil misincorporation.
Objective - To investigate the effect of folic acid supplementation on colonocyte folate status and DNA biomarkers.
Design - Twenty individuals harbouring colonic adenomas were randomised to receive folic acid (600 g daily) or placebo for 6 months post polypectomy. Systemic and colonocyte folate status was determined at baseline and following the intervention. Modified Comet assays were used to determine uracil misincorporation and global DNA hypomethylation at the site adjacent to the polyp and a site distal to the polyp.
Outcomes - Supplementation resulted in increased colonocyte folate, which approached significance, at the site adjacent to the polyp (P= 0.06) but not distal to the polyp (P= 0.36); correspondingly there was a reduction in uracil misincorporation at the site adjacent to the polyp (P = 0.02) and the distal site showed no such trend (P= 0.39). There were no significant changes in global DNA hypomethylation at either site post-intervention.
Conclusions - Folic acid supplementation resulted in increased colonocyte folate and decreased uracil misincorporation at the site of the adenoma but not distal to the adenoma. This supports the hypothesis that localised areas of folate deficiency may exist in human colonic mucosa which respond to folic acid supplementation through increasing colonocyte folate and improving folate-related DNA biomarkers of cancer risk.


Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND: Low folate status is associated with an increased risk of colorectal carcinogenesis. Optimal folate status may be genoprotective by preventing uracil misincorporation into DNA and DNA hypomethylation. Adenomatous polyps have low folate status compared with normal colonic mucosa, and they are surrounded by histologically normal mucosa that also is of low folate status. OBJECTIVE: In a randomized controlled trial conducted at a single Dublin hospital between April 2002 and March 2004, we assessed the effect of folic acid supplementation on tissue folate, uracil misincorporation into DNA, and global DNA hypomethylation in colonocytes isolated from sites of adenomatous polyps and from histologically normal tissue adjacent and 10-15 cm distal to them. METHODS: Twenty patients with adenomatous polyps on initial colonoscopy and polypectomy were randomly assigned to receive either 600 μg folic acid/d [n = 12, 38% men, mean age 64.3 y, and body mass index (BMI, in kg/m(2)) 26.6] or placebo (n = 8, 50% men, mean age 68.4 y, and BMI 27.2) for 6 mo, and then repeat the colonoscopy. Blood and colonocyte tissue folate concentrations were measured with the use of a microbiological assay. Uracil misincorporation and global DNA hypomethylation were measured in colonocytes with the use of modified comet assays. RESULTS: Over time, folic acid supplementation, compared with placebo, increased tissue folate (mean ± SEM) from 15.6 ± 2.62 pg/10(5) cells to 18.1 ± 2.12 pg/10(5) cells (P < 0.001) and decreased the global DNA hypomethylation ratio from 1.7 ± 0.1 to 1.0 ± 0.1 (P < 0.001). The uracil misincorporation ratio decreased by 0.5 ± 0.1 for the site adjacent to the polyp over time (P = 0.05). CONCLUSION: A response to folic acid supplementation, which increased colonocyte folate and improved folate-related DNA biomarkers of cancer risk, was seen in the participants studied. Exploratory analysis points toward the area formerly adjacent to polyps as possibly driving the response. That these areas persist after polypectomy in the absence of folate supplementation is consistent with a potentially carcinogenic field's causing the appearance of the polyp.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Panic disorder can serve as a clinical model for testing whether mental stress can cause heart disease. Potential neural mechanisms of cardiac risk are the sympathetic activation during panic attacks, continuing release of adrenaline as a co-transmitter in the cardiac sympathetic nerves, and impairment of noradrenaline neuronal reuptake, augmenting sympathetic neural respnses.

The phenotype of impaired neuronal reuptake of noradrenaline: an epigenetic mechanism? We suspect that this phenotype, in sensitizing people to heart symptom development, is a cause of panic disorder, and by magnifying the sympathetic neural signal in the heart, underlies increased cardiac risk. No loss of function mutations of the coding region of the norepinephrine transporter (NET) are evident, but we do detect hypermethylation of CpG islands in the NET gene promoter region. Chromatin immunoprecipitation methodology demonstrates binding of the inhibitory transcription factor, MeCP2, to promoter region DNA in panic disorder patients.

Cardiovascular illnesses co-morbid with panic disorder. Panic disorder commonly coexists with essential hypertension and the postural tachycardia syndrome. In both of these cardiovascular disorders the impaired neuronal noradrenaline reuptake phenotype is also present and, as with panic disorder, is associated with NET gene promoter region DNA hypermethylation. An epigenetic ‘co-morbidity’ perhaps underlies the clinical concordance.

Brain neurotransmitters. Using internal jugular venous sampling, in the absence of a panic attack we find normal norepinephrine turnover, but based on measurements of the overflow of the serotonin metabolite, 5HIAA, a marked increase (six to sevenfold) in brain serotonin turnover in patients with panic disorder. This appears to represent the underlying neurotransmitter substrate for the disorder. Whether this brain serotonergic activation is a prime mover, or consequential on other primary causes of panic disorder, including cardiac sensitization by faulty neuronal noradrenaline reuptake leading to cardiac symptoms and the enhanced vigilance which accompanies them, is unclear at present.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Epigenetic modification can mediate environmental influences on gene expression and can modulate the disease risk associated with genetic variation. Epigenetic analysis therefore holds substantial promise for identifying mechanisms through which genetic and environmental factors jointly contribute to disease risk. The spatial and temporal variance in epigenetic profile is of particular relevance for developmental epidemiology and the study of aging, including the variable age at onset for many common diseases. This review serves as a general introduction to the topic by describing epigenetic mechanisms, with a focus on DNA methylation; genetic and environmental factors that influence DNA methylation; epigenetic influences on development, aging, and disease; and current methodology for measuring epigenetic profile. Methodological considerations for epidemiologic studies that seek to include epigenetic analysis are also discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

SMARCB1 is deleted in rhabdoid tumor, an aggressive paediatric malignancy affecting the kidney and CNS. We hypothesized that the oncogenic pathway in rhabdoid tumors involved epigenetic silencing of key cell cycle regulators as a consequence of altered chromatin-remodelling, attributable to loss of SMARCB1, and that this hypothesis if proven could provide a biological rationale for testing epigenetic therapies in this disease. We used an inducible expression system to show that the imprinted cell cycle inhibitor CDKN1C is a downstream target for SMARCB1 and is transcriptionally activated by increased histone H3 and H4 acetylation at the promoter. We also show that CDKN1C expression induces cell cycle arrest, CDKN1C knockdown with siRNA is associated with increased proliferation, and is able to compete against the anti-proliferative effect of restored SMARCB1 expression. The histone deacetylase inhibitor (HDACi), Romidepsin, specifically restored CDKN1C expression in rhabdoid tumor cells through promoter histone H3 and H4 acetylation, recapitulating the effect of SMARCB1 on CDKNIC allelic expression, and induced cell cycle arrest in G401 and STM91-01 rhabdoid tumor cell lines. CDKN1C expression was also shown to be generally absent in clinical specimens of rhabdoid tumor, however CDKN1A and CDKN1B expression persisted. Our observations suggest that maintenance of CDKN1C expression plays a critical role in preventing rhabdoid tumor growth. Significantly, we report for the first time, parallels between the molecular pathways of SMARCB1 restoration and Romidepsin treatment, and demonstrate a biological basis for the further exploration of histone deacetylase inhibitors as relevant therapeutic reagents in the treatment of rhabdoid tumor.